$0.23 \times 0.20 \times 0.20$ mm

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-[(2-Chloropyridin-5-ylmethyl)(ethyl)azanvl]-4-(2-fluorophenvl)-1-methvl-5-nitro-1,2,3,4-tetrahydropyridin-2-one

Chuan-Wen Sun,* Jing Wang and Ying Wu

Department of Chemistry, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, People's Republic of China Correspondence e-mail: jingwangchemistry@163.com

Received 5 January 2012; accepted 9 February 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.070; wR factor = 0.151; data-to-parameter ratio = 12.8.

In the title compound, C₂₀H₂₀ClFN₄O₃, the tetrahydropyridone ring adopts a skew boat conformation. The dihedral angle between the mean planes of the benzene and pyridine rings is 80.7 (3)°. In the crystal, weak $C-H \cdots O$ interactions are observed.

Related literature

For general background to neonicotinoid compounds and their application as insecticides, see: Jeschke & Nauen (2008); Kagabu & Matsuno (1997); Ohno et al. (2009); Shao et al. (2008); Tian et al. (2007); Tomizawa & Casida (2009). For the synthesis of the title compound, see: Zhang et al. (2010). For puckering parameters, see Cremer & Pople (1975).

Experimental

Crystal data

C20H20ClFN4O3 $M_r = 418.85$ Triclinic, $P\overline{1}$ a = 6.750 (2) Åb = 8.262 (3) Å c = 17.853 (6) Å

$\alpha = 94.981 \ (6)^{\circ}$
$\beta = 91.302 \ (7)^{\circ}$
$\gamma = 100.593 \ (7)^{\circ}$
V = 974.2 (6) Å ³
Z = 2

Mo $K\alpha$ radiation

```
\mu = 0.24 \text{ mm}^{-1}
T = 298 \text{ K}
```

Data collection

Bruker SMART CCD area-detector	5691 measured reflections
diffractometer	3391 independent reflections
Absorption correction: multi-scan	1943 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2003)	$R_{\rm int} = 0.073$
$T_{\rm min} = 0.938, T_{\rm max} = 0.954$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.070$	264 parameters
$vR(F^2) = 0.151$	H-atom parameters constrained
S = 0.96	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
391 reflections	$\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8 - H8C \cdots O1^{i} C6 - H6A \cdots O3^{ii} C3 - H3 \cdots O1 C2 - H2 \cdots O3^{iii}$	0.96 0.97 0.93 0.93	2.46 2.57 2.53 2.46	3.383 (5) 3.506 (5) 3.320 (5) 3.344 (5)	161 161 143 159

Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z; (iii) -x + 1, -y, -z + 2.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported mostly by the National Natural Science Foundation of China (grant Nos 21042010, 21102092 and 30870560).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2119).

References

- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Jeschke, P. & Nauen, R. (2008). Pest Manage. Sci. 64, 1084-1098.
- Kagabu, S. & Matsuno, H. (1997). J. Agric. Food Chem. 45, 276-281.
- Ohno, I., Tomizawa, M., Durkin, K. A., Naruse, Y., Casida, J. E. & Kagabu, S. (2009). Chem. Res. Toxicol. 22, 476-482.
- Shao, X. S., Zhang, W. W., Peng, Y. Q., Li, Z., Tian, Z. Z. & Qian, X. H. (2008). Bioorg. Med. Chem. Lett. 18, 6513-6516.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food Chem. 55, 2288-2292.
- Tomizawa, M. & Casida, J. E. (2009). Acc. Chem. Res. 42, 260-269.
- Zhang, W. W., Yang, X. B., Chen, W. D., Xu, X. Y., Li, L., Zhai, H. B. & Li, Z. (2010). J. Agric. Food Chem. 58, 2741-2745.

supplementary materials

Acta Cryst. (2012). E68, o753 [doi:10.1107/S1600536812005776]

6-[(2-Chloropyridin-5-ylmethyl)(ethyl)azanyl]-4-(2-fluorophenyl)-1-methyl-5nitro-1,2,3,4-tetrahydropyridin-2-one

Chuan-Wen Sun, Jing Wang and Ying Wu

Comment

In recent years, neonicotinoid insecticide compounds have rapidly grown and become a new chemical class of insecticides because of their novel structure and mode of action (Jeschke & Nauen,2008; Kagabu & Matsuno,1997; Ohno *et al.*, 2009; Shao *et al.*, 2008; Tian *et al.*, 2007; Tomizawa & Casida, 2009). We report here the synthesis and crystal structure of one of these compounds, C₂₀H₂₀ClFN₄O₃, the title compound, (I).

In (I) the tetrahydropyridone ring adopts a skew boat conformation with puckering paramers (Cremer & Pople, 1975) Q, θ and φ of 0.526 (4)Å, 113.2 (4)° and 22.0 (4)°) and a N2/C9/C10/N4 dihedral angle of -21.6 (6)° (Fig.1). In the tetrahydropyridone moiety, C11—C10, C12—C11 and C13—C12 bond lengths (1.499 (5) Å, 1.527 (5) Å and 1.503 (5) Å) are slightly shorter than normal. The C13—N3, C9—N3, and C10—N4 bond lengths (1.391 (4)Å, 1.417 (4)Å, and 1.422 (4)Å, respectively) are slightly shorter than normal while the C9=C10 bond length (1.360 (4)Å) is slightly longer than normal. The dihedral angle between the mean planes of the benzene and pryidine rings is 80.7 (3)°. In the crystal structure weak C2—H2…O3, C8—H8C…O1 and C6—H6A…O3 intermolecular interactions are observed which may influence crystal packing (Fig.2).

Experimental

In the preparation of the title compound, a solution of 2-fluorobenzaldehyde (15 mmol), Meldrum's acid (15 mmol) in ethanol (30 ml), with piperidine (0.1 mmol) used as catalyst, was added dropwise and the solution was stirred at room temperature for 2 h. Nitenpyram (2.75 g, 10 mmol) was added to the reaction mixture, heated to 65 °C for 6 h and then cooled to room temperature. The reaction mixture was concentrated under reduced pressure and treated with 20 ml of water whereby the solution was extracted three times with CH_2Cl_2 , and the combined extracts were dried over MgSO₄. The organic phase was evaporated under reduced pressure and the crude product was subjected to flash chromatography on silica gel, eluting with ethyl acetate /petroleum ether to afford pure yellow crystals (yield 81%). Anal. calcd. for $C_{20}H_{20}ClFN_4O_3$ C 57.33, H 4.80, N 13.36% found, C 57.35, H 4.81, N 13.38%.

Refinement

All H atoms bonded to C were positioned geometrically [C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96Å (methyl)] and refined in the riding mode with $[U_{iso}(H) = 1.2U_{eq}(aromatic and methylene C) and 1.5U_{eq}(methyl C)]$.

Computing details

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication:

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Packing of the title compound, (I), viewed along the *a* axis. Weak C2—H2···O3, C8—H8C···O1 and C6—H6A···O3 intermolecular interactions are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

6-[(2-Chloropyridin-5-ylmethyl)(ethyl)azanyl]-4-(2-fluorophenyl)- 1-methyl-5-nitro-1,2,3,4-tetrahydropyridin-2-one

Crystal data	
$\begin{aligned} C_{20}H_{20}\text{ClFN}_4\text{O}_3 \\ M_r &= 418.85 \\ \text{Triclinic, } P\overline{1} \\ \text{Hall symbol: -P 1} \\ a &= 6.750 (2) \text{ Å} \\ b &= 8.262 (3) \text{ Å} \\ c &= 17.853 (6) \text{ Å} \\ a &= 94.981 (6)^{\circ} \\ \beta &= 91.302 (7)^{\circ} \\ \gamma &= 100.593 (7)^{\circ} \\ V &= 974.2 (6) \text{ Å}^3 \end{aligned}$	Z = 2 F(000) = 436 $D_x = 1.428 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 906 reflections $\theta = 2.3-19.9^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 298 K Block, yellow $0.23 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003) $T_{min} = 0.938$, $T_{max} = 0.954$ 5691 measured reflections 3391 independent reflections 1943 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.073$	$k = -9 \rightarrow 9$
$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 2.3^{\circ}$	$l = -21 \rightarrow 16$
$h = -7 \rightarrow 8$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.070$	Hydrogen site location: inferred from
$wR(F^2) = 0.151$	neighbouring sites
S = 0.96	H-atom parameters constrained
3391 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0497P)^2]$
264 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.23 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and	l isotropic or	equivalent isotrop	pic displacement	parameters (Å ²)	
-----------------------------------	----------------	--------------------	------------------	------------------------------	--

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	-0.0482 (2)	0.19595 (18)	1.06337 (7)	0.0963 (5)	
F1	0.0556 (4)	-0.3141 (3)	0.57751 (14)	0.0768 (8)	
01	0.1183 (4)	0.3810 (3)	0.70839 (17)	0.0579 (8)	
O2	0.0164 (4)	0.1954 (4)	0.61628 (17)	0.0745 (10)	
03	0.4797 (4)	-0.1603 (3)	0.82425 (15)	0.0613 (8)	
N1	0.0698 (5)	0.3252 (5)	0.9407 (2)	0.0677 (11)	
N2	0.5075 (4)	0.3694 (3)	0.76441 (15)	0.0358 (7)	
N3	0.5073 (4)	0.0931 (3)	0.78309 (15)	0.0367 (7)	
N4	0.1287 (5)	0.2474 (4)	0.67181 (19)	0.0457 (8)	
C1	0.1333 (7)	0.2582 (5)	0.9985 (2)	0.0579 (12)	
C2	0.3272 (8)	0.2367 (5)	1.0112 (2)	0.0620 (13)	
H2	0.3632	0.1866	1.0528	0.074*	
C3	0.2101 (7)	0.3769 (5)	0.8917 (2)	0.0595 (12)	
H3	0.1690	0.4245	0.8501	0.071*	
C4	0.4110 (6)	0.3647 (4)	0.8982 (2)	0.0431 (10)	
C5	0.4664 (6)	0.2921 (5)	0.9599 (2)	0.0539 (11)	
H5	0.5998	0.2804	0.9669	0.065*	
C6	0.5569 (6)	0.4366 (4)	0.8427 (2)	0.0475 (11)	
H6A	0.5631	0.5553	0.8461	0.057*	
H6B	0.6899	0.4176	0.8567	0.057*	
C7	0.5241 (6)	0.4907 (4)	0.7083 (2)	0.0468 (10)	
H7A	0.4291	0.5638	0.7190	0.056*	
H7B	0.4883	0.4331	0.6588	0.056*	

C8	0.7339 (6)	0.5922 (5)	0.7079 (3)	0.0664 (13)
H8A	0.7682	0.6524	0.7563	0.100*
H8B	0.7388	0.6686	0.6701	0.100*
H8C	0.8283	0.5204	0.6970	0.100*
C9	0.4199 (5)	0.2097 (4)	0.74628 (18)	0.0333 (9)
C10	0.2653 (5)	0.1481 (4)	0.6955 (2)	0.0360 (9)
C11	0.2062 (5)	-0.0340 (4)	0.6735 (2)	0.0387 (9)
H11	0.0674	-0.0550	0.6527	0.046*
C12	0.2044 (5)	-0.1165 (4)	0.7469 (2)	0.0444 (10)
H12A	0.0999	-0.0843	0.7782	0.053*
H12B	0.1738	-0.2357	0.7359	0.053*
C13	0.4050 (6)	-0.0674 (5)	0.78885 (19)	0.0401 (9)
C14	0.7233 (5)	0.1245 (5)	0.8024 (2)	0.0539 (11)
H14A	0.7442	0.1457	0.8560	0.081*
H14B	0.7887	0.2190	0.7787	0.081*
H14C	0.7789	0.0297	0.7852	0.081*
C15	0.3356 (5)	-0.1057 (4)	0.6151 (2)	0.0371 (9)
C16	0.2525 (6)	-0.2468 (5)	0.5697 (2)	0.0491 (11)
C17	0.3578 (7)	-0.3229 (5)	0.5167 (2)	0.0621 (13)
H17	0.2958	-0.4175	0.4870	0.074*
C18	0.5569 (7)	-0.2557 (5)	0.5088 (2)	0.0590 (12)
H18	0.6323	-0.3060	0.4740	0.071*
C19	0.6450 (6)	-0.1144 (5)	0.5521 (2)	0.0500 (11)
H19	0.7796	-0.0685	0.5462	0.060*
C20	0.5345 (6)	-0.0401 (5)	0.6044 (2)	0.0418 (10)
H20	0.5957	0.0563	0.6330	0.050*

Atomic displacement parameters $(Å^2)$

		0	U^{μ}	U^{12}	U^{13}	U^{23}
C11	0.1069 (11)	0.1166 (12)	0.0622 (9)	0.0018 (9)	0.0239 (8)	0.0258 (8)
F1	0.0722 (17)	0.0626 (16)	0.0813 (18)	-0.0162 (13)	0.0080 (14)	-0.0141 (14)
01	0.0526 (17)	0.0505 (18)	0.077 (2)	0.0280 (15)	-0.0045 (15)	0.0027 (16)
02	0.074 (2)	0.072 (2)	0.077 (2)	0.0232 (17)	-0.0420 (18)	-0.0028 (17)
03	0.087 (2)	0.0429 (17)	0.0585 (19)	0.0198 (16)	-0.0108 (16)	0.0156 (15)
N1	0.062 (2)	0.098 (3)	0.044 (2)	0.014 (2)	0.0000 (19)	0.013 (2)
N2	0.0406 (18)	0.0324 (17)	0.0344 (17)	0.0059 (14)	0.0014 (14)	0.0049 (14)
N3	0.0360 (17)	0.0358 (17)	0.0382 (18)	0.0071 (14)	-0.0067 (14)	0.0046 (14)
N4	0.0395 (19)	0.045 (2)	0.054 (2)	0.0081 (16)	-0.0040 (17)	0.0101 (17)
C1	0.073 (3)	0.059 (3)	0.038 (3)	0.006 (2)	0.003 (2)	-0.001 (2)
C2	0.089 (4)	0.059 (3)	0.038 (3)	0.010 (3)	-0.007(2)	0.010(2)
C3	0.067 (3)	0.077 (3)	0.037 (2)	0.015 (3)	-0.002(2)	0.013 (2)
C4	0.050 (3)	0.040 (2)	0.036 (2)	0.008 (2)	-0.0077 (19)	-0.0111 (18)
C5	0.064 (3)	0.056 (3)	0.042 (3)	0.015 (2)	-0.012 (2)	0.004 (2)
C6	0.055 (3)	0.037 (2)	0.046 (2)	0.0004 (19)	-0.008(2)	-0.0034 (18)
C7	0.056 (3)	0.037 (2)	0.050(2)	0.0093 (19)	0.004 (2)	0.0132 (19)
C8	0.059 (3)	0.054 (3)	0.089 (4)	0.007 (2)	0.017 (3)	0.028 (3)
С9	0.036 (2)	0.035 (2)	0.031 (2)	0.0089 (17)	0.0030 (17)	0.0075 (16)
C10	0.033 (2)	0.035 (2)	0.041 (2)	0.0104 (17)	-0.0037 (17)	0.0038 (17)
C11	0.032 (2)	0.040 (2)	0.042 (2)	0.0021 (17)	-0.0060 (17)	0.0020 (18)

supplementary materials

C19 C20	0.049 (2)	0.004 (3)	0.037 (2)	0.022 (2)	-0.0010(18)	0.009(2)
C10	0.054(3)	0.064(3)	0.037(2)	0.022(2)	0.001(2)	0.000 (2)
C18	0.076 (3)	0.065(3)	0.044(3)	0.031 (3)	0.009(2)	0.010(2)
C17	0.089 (4)	0.046 (3)	0.049 (3)	0.013 (3)	0.011 (3)	-0.006(2)
C16	0.054 (3)	0.041 (2)	0.048 (3)	-0.003 (2)	-0.001 (2)	0.006 (2)
C15	0.042 (2)	0.035 (2)	0.035 (2)	0.0100 (18)	-0.0018 (17)	0.0062 (17)
C14	0.043 (2)	0.052 (3)	0.068 (3)	0.014 (2)	-0.010 (2)	0.003 (2)
C13	0.056 (3)	0.039 (2)	0.026 (2)	0.012 (2)	0.0009 (18)	0.0049 (17)
C12	0.046 (2)	0.040 (2)	0.045 (2)	0.0019 (18)	0.0107 (19)	0.0051 (18)

Geometric parameters (Å, °)

Cl1—C1	1.744 (4)	С7—Н7В	0.9700
F1—C16	1.358 (4)	C8—H8A	0.9600
O1—N4	1.247 (4)	C8—H8B	0.9600
O2—N4	1.231 (4)	C8—H8C	0.9600
O3—C13	1.206 (4)	C9—C10	1.360 (4)
N1—C1	1.312 (5)	C10—C11	1.499 (5)
N1—C3	1.342 (5)	C11—C15	1.526 (5)
N2—C9	1.352 (4)	C11—C12	1.527 (5)
N2—C6	1.467 (4)	C11—H11	0.9800
N2—C7	1.469 (4)	C12—C13	1.503 (5)
N3—C13	1.391 (4)	C12—H12A	0.9700
N3—C9	1.417 (4)	C12—H12B	0.9700
N3—C14	1.461 (4)	C14—H14A	0.9600
N4—C10	1.422 (4)	C14—H14B	0.9600
C1—C2	1.370 (6)	C14—H14C	0.9600
C2—C5	1.373 (5)	C15—C20	1.376 (5)
С2—Н2	0.9300	C15—C16	1.381 (5)
C3—C4	1.381 (5)	C16—C17	1.373 (5)
С3—Н3	0.9300	C17—C18	1.372 (5)
C4—C5	1.374 (5)	C17—H17	0.9300
C4—C6	1.495 (5)	C18—C19	1.371 (5)
С5—Н5	0.9300	C18—H18	0.9300
С6—Н6А	0.9700	C19—C20	1.381 (5)
C6—H6B	0.9700	C19—H19	0.9300
С7—С8	1.508 (5)	С20—Н20	0.9300
С7—Н7А	0.9700		
C1—N1—C3	115.8 (4)	N2—C9—N3	115.0 (3)
C9—N2—C6	121.8 (3)	C10-C9-N3	116.8 (3)
C9—N2—C7	121.2 (3)	C9—C10—N4	121.7 (3)
C6—N2—C7	116.1 (3)	C9—C10—C11	121.2 (3)
C13—N3—C9	122.3 (3)	N4—C10—C11	116.0 (3)
C13—N3—C14	115.9 (3)	C10—C11—C15	115.7 (3)
C9—N3—C14	120.6 (3)	C10-C11-C12	105.8 (3)
O2—N4—O1	121.0 (3)	C15—C11—C12	112.4 (3)
O2—N4—C10	118.5 (3)	C10-C11-H11	107.5
O1—N4—C10	120.4 (3)	C15—C11—H11	107.5
N1—C1—C2	125.1 (4)	C12—C11—H11	107.5

N1—C1—Cl1	115.6 (4)	C13—C12—C11	110.8 (3)
C2—C1—Cl1	119.3 (4)	C13—C12—H12A	109.5
C1—C2—C5	117.3 (4)	C11—C12—H12A	109.5
C1—C2—H2	121.4	C13—C12—H12B	109.5
С5—С2—Н2	121.4	C11—C12—H12B	109.5
N1—C3—C4	125.0 (4)	H12A—C12—H12B	108.1
N1—C3—H3	117.5	O3—C13—N3	120.4 (3)
С4—С3—Н3	117.5	O3—C13—C12	123.4 (3)
C5—C4—C3	116.0 (4)	N3—C13—C12	116.2 (3)
C5—C4—C6	123.5 (4)	N3—C14—H14A	109.5
C3—C4—C6	120.3 (4)	N3—C14—H14B	109.5
C2—C5—C4	120.8 (4)	H14A—C14—H14B	109.5
С2—С5—Н5	119.6	N3—C14—H14C	109.5
C4—C5—H5	119.6	H14A—C14—H14C	109.5
N2—C6—C4	114.6 (3)	H14B—C14—H14C	109.5
N2—C6—H6A	108.6	C20—C15—C16	116.4 (4)
С4—С6—Н6А	108.6	C20—C15—C11	124.4 (3)
N2—C6—H6B	108.6	C16—C15—C11	119.2 (3)
С4—С6—Н6В	108.6	F1—C16—C17	118.1 (4)
H6A—C6—H6B	107.6	F1—C16—C15	118.4 (4)
N2—C7—C8	112.1 (3)	C17—C16—C15	123.6 (4)
N2—C7—H7A	109.2	C18—C17—C16	118.3 (4)
С8—С7—Н7А	109.2	С18—С17—Н17	120.9
N2—C7—H7B	109.2	С16—С17—Н17	120.9
С8—С7—Н7В	109.2	C19—C18—C17	120.1 (4)
H7A—C7—H7B	107.9	C19—C18—H18	119.9
С7—С8—Н8А	109.5	C17—C18—H18	119.9
С7—С8—Н8В	109.5	C18—C19—C20	120.2 (4)
H8A—C8—H8B	109.5	С18—С19—Н19	119.9
С7—С8—Н8С	109.5	С20—С19—Н19	119.9
H8A—C8—H8C	109.5	C15—C20—C19	121.4 (4)
H8B—C8—H8C	109.5	С15—С20—Н20	119.3
N2—C9—C10	128.1 (3)	С19—С20—Н20	119.3
C3—N1—C1—C2	-0.7(7)	O2—N4—C10—C11	-24.8(5)
C3—N1—C1—Cl1	178.5 (3)	O1—N4—C10—C11	152.5 (3)
N1—C1—C2—C5	1.1 (7)	C9—C10—C11—C15	-80.5 (4)
Cl1—C1—C2—C5	-178.1 (3)	N4—C10—C11—C15	111.0 (3)
C1—N1—C3—C4	-0.2 (7)	C9—C10—C11—C12	44.6 (4)
N1—C3—C4—C5	0.7 (6)	N4-C10-C11-C12	-123.9(3)
N1—C3—C4—C6	-175.9 (4)	C10-C11-C12-C13	-56.2 (4)
C1—C2—C5—C4	-0.5 (6)	C15—C11—C12—C13	70.9 (4)
C3—C4—C5—C2	-0.3 (6)	C9—N3—C13—O3	-175.8(3)
C6—C4—C5—C2	176.2 (3)	C14—N3—C13—O3	17.0 (5)
C9—N2—C6—C4	-34.4 (5)	C9—N3—C13—C12	6.1 (5)
C7—N2—C6—C4	134.8 (3)	C14—N3—C13—C12	-161.1 (3)
C5-C4-C6-N2	124.5 (4)	C11—C12—C13—O3	-143.5 (4)
C3—C4—C6—N2	-59.1 (5)	C11—C12—C13—N3	34.5 (4)
C9—N2—C7—C8	-131.8 (4)	C10-C11-C15-C20	27.1 (5)

C6—N2—C7—C8	58.8 (4)	C12-C11-C15-C20	-94.5 (4)	
C6—N2—C9—C10	136.3 (4)	C10-C11-C15-C16	-153.7 (3)	
C7—N2—C9—C10	-32.4 (5)	C12-C11-C15-C16	84.6 (4)	
C6—N2—C9—N3	-46.4 (4)	C20-C15-C16-F1	-179.0 (3)	
C7—N2—C9—N3	144.8 (3)	C11—C15—C16—F1	1.8 (5)	
C13—N3—C9—N2	160.7 (3)	C20-C15-C16-C17	0.9 (6)	
C14—N3—C9—N2	-32.6 (4)	C11—C15—C16—C17	-178.4 (4)	
C13—N3—C9—C10	-21.8 (5)	F1-C16-C17-C18	-179.8 (4)	
C14—N3—C9—C10	144.9 (3)	C15-C16-C17-C18	0.4 (6)	
N2-C9-C10-N4	-21.6 (6)	C16—C17—C18—C19	-1.2 (6)	
N3—C9—C10—N4	161.2 (3)	C17—C18—C19—C20	0.7 (6)	
N2-C9-C10-C11	170.6 (3)	C16-C15-C20-C19	-1.4 (5)	
N3—C9—C10—C11	-6.6 (5)	C11—C15—C20—C19	177.8 (3)	
O2—N4—C10—C9	166.7 (3)	C18—C19—C20—C15	0.7 (5)	
O1—N4—C10—C9	-16.0(5)			

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
C8—H8C···O1 ⁱ	0.96	2.46	3.383 (5)	161	
С6—Н6А…ОЗ ^{іі}	0.97	2.57	3.506 (5)	161	
С3—Н3…О1	0.93	2.53	3.320 (5)	143	
C2—H2···O3 ⁱⁱⁱ	0.93	2.46	3.344 (5)	159	

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*+1, *z*; (iii) –*x*+1, –*y*, –*z*+2.